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Motivation Efficient Feature Matching Hazardous Terrain Detection

Surface-to-Orbit View Generation

Goal: Use modern object detection networks to

find hazardous terrain during Mars landings

Problem: No training data and extremely 

feature-sparse images

• Less edge and intensity gradients compared 

with terrestrial environments

Solution: Use domain adaptation to tackle both 

problems simultaneously

• Model trained in simulation with 

unlabeled real-world (target) data

• Domain discriminators used to discern 

real and simulated features

• Visual similarity-based clustering before 

aligning object (instance) features to 

improve feature-sparse performance

Goal: Use traditional image processing features (e.g. SIFT, SURF, ORB) for 

asteroid mapping during TRN

Problem: Feature matching process has high computational expense and 

poor accuracy when observing asteroids 

Solution: Use vehicle state to restrict the set of matching candidates 

through Multiple Hypothesis Testing (MHT)

• Recursive least squares estimates each feature position in the asteroid-

fixed frame

• Vehicle state information (i.e. position, orientation) is used to determine 

which features are visible in the current frame

• MHT produces a rectangular region (gate) around each feature which 

converges over time as estimates improve

• Reduces number of features considered for matching only to those within 

the gate
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• Autonomous spacecraft use visual cameras for Terrain Relative 

Navigation (TRN) and Entry, Descent, and Landing (EDL) maneuvers

• Current state-of-the-art methods restricted to template matching 

approaches due to limited processing power and memory constraints

• Adoption of Tensor Processing Units (TPUs) as onboard co-processors 

enables more advanced computer vision techniques (e.g. deep learning)

• Space introduces unique perceptual challenges, including poor and 

dynamic lighting conditions, feature sparsity, and training data availability
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Goal: Use semantic segmentation for

hazard detection during Mars landings

Problem: requires large amounts of 

training data, hard to come by

• Do have labelled datasets from

previous Mars Rover missions (surface views)

• Inverse Perspective Mapping (IPM) can transform image to bird’s-eye 

view, induces unnatural pixel stretching and blurring

Solution: Use a generative model to improve the 

appearance of IPMs 

• Incremental perspective transformations reduce 

pixel deformation 

• Spatially-constrained and feature-consistent 

objective function retains surface ground truth

Top: generator architecture of our model. Left: t-SNE visualization of 

feature distributions between the surface (red), IPM (green), and our model 

(blue). Bottom: examples of generated views (bottom row) compared with 

IPMs (middle) from surface images (top)
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Gates produced by MHT 

around ORB features
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Top: Model 

architecture. Left: 

Example of a 

simulated image 

used to train the 

model

Top: Detections between YOLOv3 (left) and our model (right) on images captured during the Mars 

Perseverance Rover landing. Bottom: Detections between YOLOv3 (left) and our model (right) on 

images captured from the Mars Reconnaissance Orbiter. Red boxes represent crater detections, green 

represents sand, and blue represents mountain.


